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SUMMARY

For meta-analysis, substantial uncertainty remains about the most appropriate statistical methods for
combining the results of separate trials. An important issue for meta-analysis is how to incorporate
heterogeneity, de"ned as variation among the results of individual trials beyond that expected from chance,
into summary estimates of treatment e!ect. Another consideration is which &metric' to use to measure
treatment e!ect; for trials with binary outcomes, there are several possible metrics, including the odds ratio
(a relative measure) and risk di!erence (an absolute measure). To examine empirically how assessment of
treatment e!ect and heterogeneity may di!er when di!erent methods are utilized, we studied 125 meta-
analyses representative of those performed by clinical investigators. There was no meta-analysis in which the
summary risk di!erence and odds ratio were discrepant to the extent that one indicated signi"cant bene"t
while the other indicated signi"cant harm. Further, for most meta-analyses, summary odds ratios and risk
di!erences agreed in statistical signi"cance, leading to similar conclusions about whether treatments a!ected
outcome. Heterogeneity was common regardless of whether treatment e!ects were measured by odds ratios
or risk di!erences. However, risk di!erences usually displayed more heterogeneity than odds ratios. Random
e!ects estimates, which incorporate heterogeneity, tended to be less precisely estimated than "xed e!ects
estimates. We present two exceptions to these observations, which derive from the weights assigned to
individual trial estimates. We discuss the implications of these "ndings for selection of a metric for meta-analysis
and incorporation of heterogeneity into summary estimates. Published in 2000 by John Wiley & Sons, Ltd.

1. INTRODUCTION

Increasingly, meta-analysis is used to synthesize results from randomized controlled trials in
clinical medicine. The number of published meta-analyses has grown exponentially [1], and their



potential to change patient care is clearly established [2]. Although application of meta-analytic
techniques to clinical problems generates enthusiasm, substantial uncertainty remains about the
most appropriate methods for combining the results of separate trials.

Heterogeneity, by which we mean variation among the results of individual trials beyond that
expected from chance alone, is an important issue in meta-analysis. Heterogeneity may indicate
that trials evaluated di!erent interventions or di!erent populations. When heterogeneity is
present, it may be inappropriate to combine the separate trial estimates into a single number,
particularly using "xed e!ects methods that assume a common treatment e!ect. Random e!ects
methods, which provide an attractive approach to summarizing heterogeneous results, model
heterogeneity as variation of individual trial treatment e!ects around a population average e!ect.
The key distinction between these two types of models concerns the belief regarding behaviour of
trial e!ects as trial sample sizes get very large. If one believes that the individual trial e!ects would
converge to a common value for all trials, a "xed e!ects model is appropriate, whereas if one
believes that individual trials would still demonstrate separate e!ects, then a random e!ects
model is preferable. Despite extensive discussion of appropriate analytic approaches to hetero-
geneity [3}5], no large study has empirically examined how frequently meta-analyses in the
medical "eld are heterogeneous or how often and how much heterogeneity a!ects results.

Another important consideration for meta-analysis is which measure from individual trials
should be used to summarize treatment e!ects. For trials with binary outcomes, there are several
e!ect measures, or &metrics', directly available. Simplest of these are the risk di!erence, which
measures absolute treatment e!ect, and the odds ratio and risk ratio, which measure relative
treatment e!ect. The risk ratio is more easily understood than the odds ratio; however, math-
ematical advantages of the odds ratio over the risk ratio include its symmetry with respect to
&successes' and &failures', and the fact that the odds ratio may assume values unrestricted between
zero and in"nity. Of the risk di!erence, odds ratio and risk ratio, it can be shown that only the
risk di!erence possesses an unbiased estimator. (I. Olkin, unpublished proof, December 1998).
There are also other metrics with desirable mathematical properties (see for example Snedecor
and Cochran [6] or Emerson [7]), though these have less direct clinical appeal.

Given these considerations, there may be no metric that is &best' for all circumstances. The risk
di!erence may be the most relevant metric for clinicians and public policy experts interested in
the absolute impact of an intervention in a given population [8, 9]. In contrast, which measure is
best suited statistically for summarizing results across several trials and populations in a meta-
analysis remains unaddressed. Conclusions drawn from a meta-analysis may depend on which
metric is used, especially when measures of absolute or relative bene"t vary widely among the
trials under consideration, that is, when heterogeneity is present. A percentage change for one
metric will not translate to a like percentage change in another metric. In turn, measures of
heterogeneity will depend on the metric chosen.

We studied these issues by examining a sample of 125 meta-analyses representative of those
performed by clinical investigators. To measure treatment e!ect for the trials within each
meta-analysis, we used the odds ratio and risk di!erence metrics, both of which have well-
established statistical properties and are used in published meta-analyses. For each meta-
analysis, we derived heterogeneity measures and "xed and random e!ects summary estimates. We
addressed empirically three questions that have important implications for meta-analysis. First,
how often are the collections of trials used in meta-analysis heterogeneous? Second, when do "xed
e!ects and random e!ects methods give di!erent estimates of treatment e!ect? Third, when does
summarizing risk di!erences give a di!erent impression of treatment e!ect than summarizing
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odds ratios? Answers to these questions and a consideration of theoretical issues that they
highlight provide a useful framework for evaluating meta-analytic methods.

2. METHODS AND MODELS

2.1. Search strategy and inclusion criteria

To examine a broadly inclusive set of meta-analyses, we included in the present study meta-
analyses obtained systematically from two sources: seven major medical journals that publish
relatively large numbers of meta-analyses (1990}1996 issues of Annals of Internal Medicine,
Archives of Internal Medicine, British Medical Journal, Circulation, Journal of the American
Medical Association, ¸ancet, and New England Journal of Medicine, with meta-analyses identi"ed
through a Medline search), and the 1994 Cochrane Pregnancy and Childbirth database (CCPC,
a comprehensive database of systematic reviews on perinatal topics) [10].

Included meta-analyses reported randomized controlled trial data as 2]2 tables for binary
outcomes. To ensure that included meta-analyses had su$cient data to provide valid e!ect
estimates, we required that each have six or more trials with at least one event in the control arm
and that the average number of events in the trial control arms be at least "ve. To avoid very
small trials, we excluded from the meta-analysis any trial with fewer than ten subjects in either
arm.

2.2. Extraction of data

For meta-analyses that examined several outcomes, we included data only for the outcome
judged to have the greatest clinical relevance (chosen by J.L., who was blinded to the results of the
meta-analysis). Some journal publications included more than one meta-analysis, each conducted
on a distinct set of trials; in these cases, we included each meta-analysis separately in the present
study.

For any trial in which one arm had zero events, 1/2 was added to each cell of the corresponding
2]2 table before calculating the statistics described below [11]. Because our inclusion criteria
selected meta-analyses that had few trials with arms with zero events, this correction for zero cells
had a minimal impact on conclusions.

2.3. Meta-analytic summary statistics

2.3.1. Summary ewect estimates for each meta-analysis. For each meta-analysis we calculated the
Mantel}Haenszel odds ratio as the "xed e!ects summary estimate of the individual trials'
common odds ratio [12]. For each trial i, let p

Ti
and p
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represent the proportion of subjects with

the event in the treatment and control arm, respectively, and n
Ti

and n
Ci

the corresponding
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The standard error of the logarithm of this estimate is discussed by Robins et al. [13].
The "xed e!ects risk di!erence summary estimate is a weighted average of the trial
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We used the method of DerSimonian and Laird to derive random e!ects summary estimates

for the risk di!erence [14], and a modi"cation of this method to derive estimates for the odds
ratio [15]. The random e!ects estimates are weighted averages of either the RD

i
's or the

logarithm of the OR
i
's. The random e!ects weights w*

i
are based on the corresponding "xed
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and where K is the number of trials. For the random e!ects risk di!erence, the "xed e!ects
weights w
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i
are the w

Ri
's. For the logarithm of the odds ratio the "xed

e!ects weights w
i
are given by

w
Li
"1/M[n

Ti
p
Ti

(1!p
Ti

)]~1#[n
Ci

p
Ci

(1!p
Ci

)]~1N

The variance of the random e!ects estimate is 1/(+ w*
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). For the risk di!erences, it is always

true that w*
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)w

i
, so the variance of the "xed e!ects estimate never exceeds that of the random

e!ects estimate. However, the variance of the Mantel}Haenszel odds ratio estimate can exceed
the variance of the random e!ects odds ratio, because unlike the Mantel}Haenszel odds ratio, the
random e!ects odds ratio is derived as a weighted average of the logarithm of trial odds ratios.

Examination of the weighting formulae suggests how these estimators might di!er under
various data structures. To simplify matters, we assume that the sample sizes in the two trial
treatment arms are approximately equal. This assumption usually holds in the clinical trials we
consider in this paper. Then the weights may be rewritten as
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when n is the common size of the trial arms. For comparison here, we also list weights for the Peto
estimate of the summary odds ratio [16]:
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Table I shows the relative weights assigned to individual trial estimates for each summary
method, for a hypothetical meta-analysis in which all trials have the same size. Each column of
weights is scaled so that the weight assigned to a trial with p

T
"p

C
"0.50 would be 1.00. Because

of this scaling, weights are easily compared within columns, but direct comparisons of weights
between columns are not valid. For example, compared with a trial in which p

T
"p

C
"0.50, the

last row of Table I shows that an equally sized trial in which p
C
"0.05 and p

T
"0.01 would

receive 8.71 times as much weight in an estimate of the "xed e!ect summary risk di!erence
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Table I. Relative weights for di!erent estimators.

p
C

p
T

Risk di!erence Odds ratio w
R

w
O

w
L

w
P

0.500 0.500 0.000 1.00 1.00 1.00 1.00 1.00

0.250 0.500 0.250 3.00 1.14 0.50 0.86 0.94
0.250 0.375 0.125 1.80 1.19 0.63 0.83 0.86
0.250 0.250 0.000 1.00 1.33 0.75 0.75 0.75
0.375 0.250 !0.125 0.56 1.19 1.13 0.83 0.86
0.500 0.250 !0.250 0.33 1.14 1.50 0.86 0.94

0.100 0.500 0.400 9.00 1.47 0.20 0.53 0.84
0.100 0.200 0.100 2.25 2.00 0.32 0.46 0.51
0.100 0.150 0.050 1.59 2.30 0.34 0.42 0.44
0.100 0.100 0.000 1.00 2.78 0.36 0.36 0.36
0.150 0.100 !0.050 0.63 2.30 0.54 0.42 0.44
0.200 0.100 !0.100 0.44 2.00 0.72 0.46 0.51
0.500 0.100 !0.400 0.11 1.47 1.80 0.53 0.84

0.050 0.250 0.200 6.33 2.13 0.15 0.30 0.51
0.050 0.100 0.050 2.11 3.64 0.18 0.25 0.28
0.050 0.075 0.025 1.54 4.28 0.19 0.23 0.23
0.050 0.050 0.000 1.00 5.26 0.19 0.19 0.19
0.075 0.050 !0.025 0.65 4.28 0.29 0.23 0.23
0.100 0.050 !0.050 0.47 3.64 0.38 0.25 0.28
0.250 0.050 !0.200 0.16 2.13 0.95 0.30 0.51

0.010 0.050 0.040 5.21 8.71 0.04 0.07 0.12
0.010 0.020 0.010 2.02 16.95 0.04 0.05 0.06
0.010 0.015 0.005 1.51 20.26 0.04 0.05 0.05
0.010 0.010 0.000 1.00 25.25 0.04 0.04 0.04
0.015 0.010 !0.005 0.66 20.26 0.06 0.05 0.05
0.020 0.010 !0.010 0.49 16.95 0.08 0.05 0.06
0.050 0.010 !0.040 0.19 8.71 0.20 0.07 0.12

The rows of the table are ordered in blocks, in descending order with respect to the minimum of p
T

and p
C

within each
block.
Abbreviations: p

T
, proportion with outcome in treatment arm: p

C
, proportion with outcome in control arm; w

R
, risk

di!erence weight; w
O
, Mantel}Haenszel odds ratio weight; w

L
, weight for logarithm of odds ratio; w

P
, Peto odds ratio

weight.

(w
R
"8.71), but only one-"fth the weight (w

O
"0.20) when using the Mantel}Haenszel method to

estimate the odds ratio.
Consideration of the formulae and Table I highlights two "ndings. First, the risk di!erence

metric gives large weight to trials with small proportions p
T
and p

C
. Second, the various summary

methods utilizing the odds ratio metric give large weight to trials with p
T

and p
C

near 0.50.
In calculating the summary e!ect estimate for an actual meta-analysis, the relative weight given

to an individual trial's estimate will also depend on that trial's group sample size n. Furthermore,
for random e!ects models, the patterns noted in Table I will be mitigated because inclusion of the
variance component, D, tends to make the relative weights more uniform across studies; a trial
with large "xed e!ect weight will receive a relatively smaller weight in a random e!ects model.
The potential e!ects on the interpretation of meta-analyses that can derive from these di!erences
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in relative weights across metrics and models will be illustrated later by two examples (Sections
3.4.1 and 3.4.2).

2.3.2. Heterogeneity. To measure heterogeneity, we calculated Q-statistics for the trial odds
ratios and for the risk di!erences in each meta-analysis [14]. Q is de"ned as + w (>

i
!>

&*9
)2. For

the odds ratios, one uses w"w
Li

, >
i
"log (OR

i
), and >

&*9
"+ w

Li
log (OR

i
)/+ w

Li
. For the risk

di!erences, w"w
Ri

, >
i
"RD

i
, and >

&*9
"+ w

Ri
RD

i
/+ w

Ri
. Under the null hypothesis of a com-

mon treatment e!ect among trials, these Q-statistics follow a s2 distribution with K!1 degrees
of freedom [17].

The one-tailed p-value of the Q-statistic provides a convenient measure of heterogeneity, one
that can be applied across di!erent treatment e!ect metrics. For a given set of randomized trials,
one may say that the trial risk di!erences &display more heterogeneity' (or &are more heterogen-
eous') than the corresponding odds ratios, if the p-value for the risk di!erence Q-statistic is less
than the p-value for the odds ratio Q-statistic. Similarly, following common practice, one may
label a collection of trial odds ratios or risk di!erences as &heterogeneous'when the corresponding
Q-statistic p-value is below a nominal cut-o!, usually 0.05 or 0.10 [17].

2.4. Computer software

All computations used to calculate and compare the statistics presented are easily programmed.
We used the computer program Meta-Analyst (version 0.989, ( J. Lau, New England Medical
Center, Boston, 1996; available upon request) to derive these summary statistics for each
meta-analysis. For subsequent comparisons of meta-analysis statistics, we used S-plus (version
3.3 for Windows, ( MathSoft, Seattle, 1995).

3. RESULTS

3.1. Description of included meta-analyses

A total of 125 meta-analyses were included in this study: 80 were from medical journals, and 45
were from the CCPC (see Schmid et al. [18] for a list of 115 of these meta-analyses, to which 10
additional meta-analyses were added in a 1996 updated search [19}28]). As shown in Table II,
the meta-analyses from the medical journals included more trials than did those in the CCPC.
The journal-published meta-analyses therefore had more patients than those from the CCPC,
although the average trial size within meta-analyses was comparable.

3.2. Heterogeneity of meta-analyses

Figure 1 provides a plot of the p-value of the risk di!erence Q-statistic against the p-value of the
odds ratio Q-statistic, for each of the 125 meta-analyses. As noted, the p-value of the Q-statistic
measures heterogeneity among observed odds ratios or risk di!erences. We explored several
scales for graphically displaying these p-values, including linear, logarithmic and square root
scales. We display p-values in Figure 1 (and subsequently in Figures 3}6) using a scale propor-
tional to the fourth root of the p-value, because this scale best displays these p-values over a broad
range from 0 to 1, and it centres p-values lying between 0.05 and 0.10.
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Table II. Comparison of meta-analyses published in medical journals with those in Cochrane Collaboration
Pregnancy and Childbirth database (CCPC).

All
meta-analyses

Journal-published
meta-analyses

CCPC
meta-analyses

P-value journal
versus CCPC
meta-analyses(N"125) (N"80) (N"45)

Number (%) of meta-analyses with: 0.0002

6}10 trials 66 (53) 33 (41) 33 (73)
11}15 trials 28 (22) 20 (25) 8 (18)
*16 trials 31 (25) 27 (34) 4 (9)

Overall number of subjects in
meta-analysis, median
(interquartile range)

2485 4108 1835 0.005

(1353}7105) (1542}11,220) (1193}2940)

Average trial size, median
(interquartile range)

260 263 177 0.16

(137}583) (152}624) (128}420)

The Wilcoxon rank sum test was used to compare distributions of these continuous variables between the two groups of
meta-analyses.

The diagonal line in Figure 1 indicates where the Q-statistic p-value for the risk di!erence
equals that for the odds ratio. It is apparent that the risk di!erences usually displayed more
heterogeneity than the odds ratios; for 107 (86 per cent) of the meta-analyses, the Q-statistic
p-value for the risk di!erences was less than that for the odds ratios (sign test, p(0.0001).

Regardless of which Q-statistic p-value we used as a cut-o! to identify heterogeneity, more
meta-analyses had heterogeneous risk di!erences than heterogeneous odds ratios. For the risk
di!erence metric, and p-value cut-o!s of 0.05, 0.10 (horizontal line, Figure 1) and 0.20, the
numbers of meta-analyses judged heterogeneous were 56, 59 and 71, respectively. Using the odds
ratio metric, the corresponding numbers of meta-analyses judged heterogeneous were 31, 44
(demarcated by the vertical line, Figure 1) and 54, respectively.

3.3. Comparison of xxed and random ewects statistics

For the risk di!erence metric, we directly compared "xed and random e!ects statistics for each
meta-analysis (Figure 2). Part (a) compares the point estimates, part (b) compares the standard
errors and part (c) compared the Z-statistics, which are ratios of the point estimates to their
standard errors. For 33 meta-analyses (26 per cent of the total), the "xed and random e!ects point
estimates, standard errors and Z-statistics were all equal; these are the meta-analyses for which
the value of the Q-statistic was less than K!1 (see Section 2.3.1). This equality is commonly
interpreted as indicating that no appreciable heterogeneity is present and that "xed e!ects
estimates are acceptable.

For 71 of the remaining 92 meta-analyses (77 per cent), the random e!ects risk di!erence
estimate was more conservative (had a smaller Z-statistic) than the "xed e!ects estimate (Figure
2(c)). This was the case largely because random e!ects standard errors were larger than
the corresponding "xed e!ects standard errors (Figure 2(b)); in fact, 75 of these 92 meta-analyses
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Figure 1. Q-statistic p-values (one-tailed) for trial odds ratios and risk di!erences are compared, for each of
the 125 meta-analyses. P-values are plotted on a fourth-root scale (see Section 3.2). The diagonal line
indicates equality, while the horizontal and vertical dashed lines indicate Q-statistic p-values of 0.10. Arrows

indicate directions of increasing or decreasing heterogeneity.

(82 per cent) actually had a random e!ects point estimate more extreme (further from the null
value of 0) than their "xed e!ects estimate (Figure 2(a)).

Similarly, for the odds ratio metric, we compared "xed and random e!ects statistics from each
meta-analysis (Figures 2(d )}( f ) ). Because the random e!ects odds ratio statistic does not reduce
to the Mantel}Haenszel odds ratio statistic when Q(K!1, there was only one meta-analysis
where the "xed and random e!ects summary odds ratios were equal (to four signi"cant "gures).
Among the remaining 124 meta-analyses, neither method favoured more extreme summary odds
ratios (the random e!ects estimates were closer to 1 for 63 meta-analyses, p"0.93 by the sign
test). However, because the random e!ects standard errors were greater than the "xed e!ects
standard errors in 119 meta-analyses (95 per cent), the random e!ects Z-statistics were usually
less signi"cant than the "xed e!ects Z-statistics (106, or 85 per cent, of meta-analyses, Figure 2( f );
sign test, p(0.0001).

3.4. Comparison of summary odds ratios and risk diwerences

We were interested in exploring whether the conclusions obtained by meta-analysis depend on
whether one analyzes odds ratios or risk di!erences of the included trials. Although odds ratios
and risk di!erences are not directly comparable, one can assess whether the summary estimates
derived for these measures agree on the direction of treatment e!ect and the statistical signi"cance
of this e!ect.
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Figure 2. Fixed and random e!ects statistics are compared for each meta-analysis (N"125). For the risk
di!erence metric, (a) compares "xed and random e!ects summary estimates, (b) compares the standard
errors for these estimates, and (c) compares the Z-statistics for these estimates. Similarly, for the odds ratio,
(d ) compares "xed and random e!ects summary estimates (log-transformed), (e) compares standard errors
for these log-transformed odds ratio estimates, and ( f ) compares their Z-statistics. In each part, the diagonal

line indicates equality for the compared statistics.
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Figure 3. For each meta-analysis (N"125), the parts in this "gure display pairwise comparisons of
signi"cance levels reached by four summary statistics: (a) random versus "xed e!ects risk di!erence; (b)
random versus "xed e!ects odds ratio; (c) "xed e!ects odds ratio versus "xed e!ects risk di!erence; (d )
random e!ects odds ratio versus random e!ects risk di!erence. P-values, which are two-sided, are displayed

on a fourth root scale. Horizontal and vertical dashed lines indicate p-values of 0.05.

Of importance, we found no meta-analysis for which the summary risk di!erence and summary
odds ratio indicated treatment e!ects that were each statistically signi"cant but directed in
opposite directions. This provides some comfort that, at least qualitatively, conclusions from
meta-analyses are robust to changes of metric. As a result, we focused on the level of signi"cance
for the di!erent summary estimates.

Figure 3 compares the signi"cance levels (two-sided p-values) for four summary estimates: the
"xed e!ects risk di!erence; "xed e!ects odds ratio; random e!ects risk di!erence, and random
e!ects odds ratio. Figure parts comparing "xed and random e!ects risk di!erences (part (a)), and
"xed and random e!ects odds ratios (part (b) ), complement the Z-statistics shown in Figures 2(c)
and ( f ); they illustrate that random e!ects estimates were often less signi"cant than "xed e!ects
estimates.
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The "xed e!ects odds ratios were often more signi"cant than the "xed e!ects risk di!erences
(Figure 3(c)). However, these "xed e!ects methods were not always appropriate, since for 62
meta-analyses (50 per cent) the odds ratios and/or risk di!erences were heterogeneous (Q-statistic
p-value(0.10). For the 125 meta-analyses overall, there was no tendency for the random e!ects
odds ratio to be more signi"cant than the random e!ects risk di!erence (sign test, p"0.32),
though there was a reasonable amount of scatter around the line of equality for the respective
p-values (Figure 3(d ) ).

Next, we divided the 125 meta-analyses into four subgroups depending on whether the odds
ratios or risk di!erences were heterogeneous, de"ned for each metric as a Q-statistic p-value less
than 0.10. These subgroups are described in Sections 3.4.1}3.4.4.

3.4.1. *Homogeneous+ meta-analyses. We describe as &homogeneous' the subset of 63 meta-ana-
lyses (50 per cent) in which neither the odds ratios nor the risk di!erences were heterogeneous.
Even within this subset, the risk di!erences displayed more heterogeneity than the odds ratios
(sign test for Q-statistic p-values, p(0.0001).

As expected, for homogeneous meta-analyses, the signi"cance levels of the random e!ects
estimates were very close to those of the corresponding "xed e!ects estimates. With the risk
di!erence metric, the signi"cance levels of the "xed and random e!ects estimates were equal for 31
of these meta-analyses (49 per cent); for 22 of the remaining 32 meta-analyses the "xed e!ects
estimate was more signi"cant (Figure 4(a); sign test, p"0.05). For the odds ratio metric, the
signi"cance of "xed e!ects estimates generally agreed with that of random e!ects estimates
(Figure 4(b)), although the "xed e!ects estimate was more signi"cant for 47 meta-analyses (75 per
cent, p(0.0001 sign test).

For almost all homogeneous meta-analyses, the signi"cance of the "xed e!ects odds ratio
agreed closely with that of the "xed e!ects risk di!erence (Figure 4(c)); sign test, p"0.90). The
random e!ects estimates for these meta-analyses, similar to the "xed e!ects estimates, also tended
to agree (Figure 4(d) ).

Of interest, one meta-analysis (indicated with an open symbol in Figure 4(c)) yielded a "xed
e!ects odds ratio with much greater signi"cance (p-value 2.2]10~5) than the corresponding
"xed e!ects risk di!erence (p-value 0.02). Table III summarizes relevant aspects of this meta-
analysis, which examined ACE-inhibitors in the treatment of heart failure [29]. Strikingly, due to
the SOLVD trial's comparatively large size (2569 subjects, 36 per cent of total subjects in the
meta-analysis) and high event rates p

T
and p

C
, its odds ratio of 0.80 carried 70 per cent of the

weight in determining the "xed e!ects odds ratio. The Riegger and Uprichard trials, both much
smaller and "nding few events, carried very little weight. On the other hand, the "xed e!ects risk
di!erence was pulled close to the null value by the small risk di!erences in the Riegger and
Uprichard trials, which were precisely estimated and carried substantial weight. This meta-
analysis therefore represents a case in which conclusions regarding treatment e$cacy might be
strongly a!ected by the metric used, in large part because "xed e!ects weights for odds ratios
di!er dramatically from those for risk di!erences.

These results are what one would expect from the earlier discussion of Table I, where we noted
that studies with low event rates p

T
and p

C
receive large weight using the risk di!erence metric and

studies with high event rates receive large weight with the odds ratio metric. Owing to di!erences
in the event rates in trials of the ACE-inhibitor meta-analysis , the relatively large SOLVD trial
contributes greatly to the summary odds ratio estimate but little to the risk di!erence estimate.
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Figure 4. Pairwise comparisons of the signi"cance levels for four summary statistics are presented, as in
Figure 3, for the subset of 63 &homogeneous' meta-analyses. Homogeneous meta-analyses are those for
which both odds ratio and risk di!erence Q-statistics are non-signi"cant (p*0.10). In parts (c) and (d ), the

meta-analysis by Garg et al. [29] is represented by an open symbol (see Section 3.4.1).

3.4.2. Meta-analyses in which both risk diwerences and odds ratios were heterogeneous. There were
41 meta-analyses in which both the odds ratios and risk di!erences were heterogeneous. For 38 of
these, the risk di!erences were more heterogeneous than the odds ratios (sign test, p(0.0001).

For both odds ratio and risk di!erence metrics, the random e!ects estimates were less
signi"cant than the corresponding "xed e!ects estimates (Figures 5(a) and (b); sign test,
p(0.0001 for each comparison). Of note, however, for one of these meta-analyses (open symbol,
Figures 5(a) and (b)), the random e!ects odds ratio and risk di!erence were both substantially
more signi"cant than the respective "xed e!ects estimates. This meta-analysis, which examined
mortality with magnesium treatment following myocardial infarction, has been described in
several reports [30}32].

Table IV provides a summary of odds ratio data for the magnesium therapy meta-analysis. The
ISIS-4 trial, largest by far in the meta-analysis with 94 per cent of the total patients, found no
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Figure 5. Pairwise comparisons of the signi"cance levels for four summary statistics are presented, as in
Figure 3, for the subset of 41 meta-analyses in which both odds ratios and risk di!erences are heterogeneous
(Q-statistic p(0.10). In parts (a) and (b), the meta-analysis of magnesium therapy is represented by an open

symbol (see Section 3.4.2.).

bene"t to treatment, and its odds ratio of 1.06 pulled the "xed e!ect estimate toward the null
value. However, for the random e!ects odds ratio estimate, substantial heterogeneity among the
11 trial odds ratios led to a variance component D substantially greater than zero. This caused the
relative weights to be more equal under the random e!ects model than under the "xed e!ects
model, as was discussed in Section 2.3.1. The random e!ects summary estimate was less than the
null value, due to the in#uence of smaller trials that found a treatment bene"t. For this meta-
analysis, the random e!ects estimate was statistically signi"cant, even with its larger standard
error. A similar analysis applies for the risk di!erence estimates in this meta-analysis.

As shown in Figure 5(d ), the random e!ects odds ratio and risk di!erence estimates agreed
moderately well in statistical signi"cance (sign test, p"0.35). For completeness, part (c) compares
"xed e!ects estimates, although they are not appropriate in the presence of heterogeneity.
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Figure 6. Pairwise comparisons of the signi"cance levels for four summary statistics are
presented, as in Figure 3, for the subset of 18 meta-analyses in which only risk di!erences

are heterogeneous (Q-statistic p(0.10).

3.4.3. Meta-analyses in which only the risk diwerences were heterogeneous. There were 18 meta-
analyses in which only the risk di!erences were judged heterogeneous. With the risk di!erence
metric, the random e!ects estimate was less signi"cant than the "xed e!ects estimate for 13 of
these meta-analyses (Figure 6(a); sign test, p"0.10).

For the odds ratio metric, Figure 6(b) compares the signi"cance of the "xed and random e!ects
estimates. The random e!ects odds ratio was less signi"cant than the "xed e!ects odds ratio for
all 18 of these meta-analyses (sign test, p(0.0001). This is explained by the relative heterogeneity
of the odds ratios in these meta-analysis; even though the odds ratios were not signi"cantly
heterogeneous in any meta-analysis (each had Q-statistic p*0.10), the odds ratios were still
heterogeneous enough for "xed and random e!ects estimates to di!er.

As shown in Figure 6(d), the random e!ects odds ratio was more signi"cant than the random
e!ects risk di!erence for 13 meta-analyses (72 per cent; sign test, p"0.10). Again the signi"cance
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levels of the "xed e!ects estimates are compared graphically in Figure 6(c), although it is not
appropriate to use a "xed e!ects method for the risk di!erences.

3.4.4. Meta-analyses in which only the odds ratios were heterogeneous. There were only three
meta-analyses in which the odds ratios were heterogeneous while the risk di!erences were not
heterogeneous; these meta-analyses lie in the upper left portion of Figure 1. These meta-analyses
are a subset of the 18 meta-analyses that lie above the diagonal line in that "gure, for each of
which the odds ratios were more heterogeneous than the risk di!erences. As can be seen from
Figure 1, the Q-statistic p-values for the odds ratios and risk di!erences are not dramatically
di!erent for these three meta-analyses, and the meta-analyses are identi"ed solely by the arbitrary
cut-o! point of 0.10 for the Q-statistic p-value. We therefore do not display separate plots of the
p-values for the summary estimates for these three meta-analyses.

3.4.5. Nominal signixcance obtained for each method of ewect summary. Because a p-value cut-o!
of 0.05 is frequently used to determine statistical signi"cance of treatment e!ect estimates, this
cut-o! has been marked in Figures 3}6. Table V displays the corresponding number of meta-
analyses judged signi"cant at the 0.05 level, for each of the summary methods.

Using either random e!ects summary measure, more than half of meta-analyses in our sample
were nominally signi"cant. This observation suggests that meta-analyses may often alert clini-
cians to treatment di!erences or con"rm the existence of important clinical e!ects. For either
random e!ects measure, the same proportion of meta-analyses were signi"cant for journal-
published and CCPC meta-analyses (Table V).

Several explanations may be advanced for this large proportion of signi"cant meta-analyses. It
is likely that treatments are only evaluated in clinical trials when prior evidence indicates that
they are likely to be e!ective. This selection would lead to a preponderance of published trials
with treatment bene"ts, with the result that large meta-analyses of these trials (presumably with
substantial power) would frequently document bene"t. It is also possible that investigators only
chose to submit "ndings for publication when statistically signi"cant treatment e!ects were
demonstrated (the "le-drawer phenomenon [33]). Alternatively, it may be true that investigators
who perform and publish meta-analyses wait for enough trials to ensure that they have su$cient
power to uncover a treatment bene"t. Just as single trials may often remain unpublished if they
are small and non-signi"cant, so too may meta-analyses fail to be published as not newsworthy if
they are inconclusive. This explanation is not supported, however, by our "nding that meta-
analyses from the more inclusive CCPC were as likely to be signi"cant as those from the
peer-reviewed journals. Finally, the observation that meta-analyses frequently reach statistical
signi"cance may be related in part to our minimum size requirements, in that collections of fewer
than six trials were excluded from the present study.

An unexpected "nding in Table V is that homogeneous meta-analyses less often produced
statistically signi"cant summary e!ect estimates than other meta-analyses, in which odds ratios
or risk di!erences were heterogeneous. For example, 37 per cent of homogeneous meta-analyses
produced a signi"cant random e!ects odds ratio, compared with 71 per cent of non-homogeneous
meta-analyses (s2 test, p"0.0002). A tentative explanation for this observation may be outlined
as follows. Because separate trials are unlikely to "nd the same treatment both substantially
bene"cial and substantially harmful, heterogeneity may usually arise only when some trials "nd
a treatment e!ect in one direction while others "nd no treatment e!ect. The summary estimate
derived from these trials may then be pulled away from the null value, toward statistical
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Table V. Meta-analysis reaching statistical signi"cance.

Subgroup of meta-analyses Number (%) of meta-analyses that were statistically signi"cant, using
the speci"ed summary method*

Fixed e!ects Random e!ects Fixed e!ects Random e!ects
odds ratio odds ratio risk di!erence risk di!erence

All meta-analyses (N"125) 77 (62) 67 (54) 74 (59) 65 (52)

Journal-published
meta-analyses (N"80)

51 (64) 44 (55) 48 (60) 43 (54)

CCPC meta-analyses (N"45) 26 (58) 23 (51) 26 (58) 22 (49)

Homogeneous meta-analysess
(N"63)

27 (43) 23 (37) 28 (44) 24 (38)

All other meta-analyses
(N"62)

50 (81) 44 (71) 46 (74) 41 (66)

Subgroups in which meta-analyses heterogeneoust for:
Both risk di!erences
and odds ratios (N"41)

32 (78) 28 (68) 30 (73) 27 (66)

Only risk di!erences
(N"18)

15 (83) 14 (78) 13 (72) 12 (67)

Only odds ratios (N"3) 3 (100) 2 (67) 3 (100) 2 (67)

CCPC: Cochrane Collaboration Pregnancy and Childbirth Database.
* Summary estimates are judged signi"cant if the p-value (two-sided) is less than 0.05.
s Homogeneous meta-analyses are meta-analyses for which the Q-statistic p*0.10 for both odds ratios and risk
di!erences.
t Within meta-analyses, heterogeneity is de"ned for the odds ratios and for the risk di!erences as p(0.10 for the
corresponding Q-statistic.

signi"cance. In contrast, homogeneous meta-analyses may examine trials whose e!ect estimates
are clustered around the null value (otherwise no meta-analysis would be necessary), and
summary estimates may tend not to be signi"cant. Another possible explanation for heterogen-
eous meta-analyses being more likely to "nd a signi"cant treatment e!ect may be that meta-
analyses with adequate power to detect heterogeneity may tend to be the same meta-analyses
with adequate power for "nding a treatment e!ect. Further study is needed to con"rm this
observation and evaluate these explanations.

4. DISCUSSION

To our knowledge, this empirical study represents the largest systematic examination of meta-
analyses. We studied a sample of 125 meta-analyses, representative of those performed by clinicial
investigators, to determine how characteristics of the collections of trials and statistical summary
methods in#uence the conclusions drawn from meta-analyses. We compared two separate ways
of measuring treatment e!ect (odds ratio and risk di!erence), looked at agreement between "xed
and random summary estimates, and examined the prevalence of heterogeneity and its impact on
e!ect estimates. Although our study is primarily descriptive in nature, several "ndings shed light
on important theoretical issues and have immediate practical implications.
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4.1. Heterogeneity

Using the Q-statistic p-value to measure heterogeneity, we found that the trial risk di!erences
displayed more heterogeneity than trial odds ratios. For 86 per cent of the meta-analyses, the risk
di!erences were more heterogeneous than the trial odds ratios, and di!erences in heterogeneity
were often substantial (Figure 1). For 18 meta-analyses (14 per cent) the risk di!erences were
judged heterogeneous (Q-statistic p(0.10) when the odds ratios were not, whereas for only three
meta-analyses (2 per cent) were the odds ratios heterogeneous when the risk di!erences were not.

Two studies have previously examined the heterogeneity of individual trial e!ect estimates
within published meta-analyses; in contrast to our "ndings, they documented similar heterogen-
eity measures for risk di!erences and odds ratios [14, 34]. However, because these previous
studies were quite small (nine meta-analyses in the study by DerSimonian and Laird, 22 in the
study by Berlin et al.), they may have lacked su$cient power to detect di!erences in heterogeneity
between risk di!erences and odds ratios. Furthermore, both previous studies used convenience
samples which may not have been representative of meta-analyses found in clinical research. Our
much larger study sample was drawn systematically from medical journals and the Cochrane
Collaboration Pregnancy and Childbirth database [10], to re#ect a broad range of meta-
analyses. Also, some meta-analyses in the previous studies were smaller than those allowed in the
present study. For instance, Berlin et al. [34] included nine meta-analyses with fewer than six
trials, meta-analyses that we would have excluded.

Trial risk di!erences may display more heterogeneity than odds ratios because they are more
closely correlated with the proportion of subjects in the control group who develop the outcome
of interest (control rate). The control rate can be thought of as a measure of the underlying risk for
subjects in the trial, although it is a!ected not just by the health of the trial population but by trial
characteristics, such as follow-up time and surveillance intensity [18]. If the treatment is more
e!ective than the control, the risk di!erence will tend to be negative. In such a case, as the control
rate approaches zero, so must the risk di!erence, because the rate in the treatment arm cannot be
negative. Therefore, although risk di!erences can remain constant in a narrowly de"ned context,
wide variations in trial populations or trial characteristics will a!ect the control rate and thus the
risk di!erence. Odds ratios are not constrained by control rates in the same way as risk
di!erences, and empirically odds ratios are less correlated with trial control rates than are risk
di!erences [18]. How much of the heterogeneity of treatment e!ects is accounted for by variation
in trial control rates is an area of active investigation.

4.2. Comparison of random and xxed ewects summary estimates

Since heterogeneity is incorporated directly into random e!ects summary estimates and their
standard errors, it is not surprising that random e!ects estimates sometimes di!ered from
corresponding "xed e!ects estimates. The most obvious e!ect of heterogeneity was to increase the
standard errors of the random e!ects estimates (Figures 2(b) and (e)). Because the random e!ects
estimates themselves did not di!er much from the corresponding "xed e!ects estimates (Figures
2(a) and (d ) ), the overall e!ect of heterogeneity was to make most random e!ects estimates less
signi"cant than the corresponding "xed e!ects estimates, for both the odds ratio and risk
di!erence metrics.

For one meta-analysis in this study, that of magnesium treatment following myocardial
infarction, the random e!ects summary estimates indicated a larger treatment e!ect and were
more signi"cant than the corresponding "xed e!ects estimates (Figure 5 and Table IV). This
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collection of trials generated controversy about the comparability of large trials and meta-
analyses [30, 35], because a meta-analysis of the small trials found a bene"t to magnesium
treatment [31], whereas the mega-trial ISIS-4 subsequently found no bene"t. Table IV shows the
substantial heterogeneity among trial results that led to this controversy; as measured by
Q-statistic p-values for odds ratios and risk di!erences, this meta-analysis was among the most
heterogeneous meta-analyses in our study. The magnesium meta-analysis therefore serves as
a warning to investigators to examine heterogeneous collections of trial results carefully and, if
a summary e!ect measure is to be derived, to pay attention to weights assigned to individual trial
results. Nonetheless, the behaviour of estimates in the magnesium meta-analysis is unusual, in
that most heterogeneous meta-analyses that we examined demonstrated random e!ects estimates
similar in magnitude to and less signi"cant than "xed e!ects estimates.

4.3. Comparison of summary odds ratios and risk diwerences

For most meta-analyses in which neither odds ratios nor risk di!erences were heterogeneous,
"xed e!ects odds ratios and "xed e!ects risk di!erences provided similar levels of signi"cance
(Figure 4(c)). Furthermore, when both odds ratios and risk di!erences were heterogeneous,
random e!ects odds ratio and risk di!erence summary estimates tended to demonstrate similar
levels of statistical signi"cance (Figure 5(d )). This "nding that summary odds ratios and risk
di!erences often agree with respect to the degree of statistical signi"cance is reassuring and
suggests that the choice of metric used to measure and summarize the treatment e!ect is not
crucial. For the single meta-analysis that we identi"ed in which the statistical signi"cance of risk
di!erence and odds ratio summary estimates greatly di!ered, there were clear di!erences among
trial sizes and event rates (Table III). As demonstrated in Table I, di!erences in event rates can
lead to very di!erent relative weights being applied by di!erent metrics to the same study.

4.4. Implications for the conduct of meta-analyses

The risk di!erence may not be the most appropriate metric to use in meta-analysis, because risk
di!erences may be substantially heterogeneous among trials. Furthermore, the risk di!erence
metric tends to give greatest weight to trials with low event rates (Table I). This is counterintui-
tive, because trials with low event rates would seem to o!er little information about treatment
e!ects [36]. Also, in general, the asymptotic assumptions upon which standard meta-analytic
estimates are based are not supported by trials with few events. How commonly meta-analyses
include trials with low event rates, and how frequently this a!ects summary estimates, cannot be
determined from this study, because we speci"cally excluded some meta-analyses with low
event-rate trials.

Clinical and public policy decisions are often based on absolute measures of treatment e!ect,
such as the risk di!erence, or its multiplicative inverse, the number-needed-to-treat. Our results
suggest that the odds ratio is more likely than the risk di!erence to remain constant across
populations. Therefore, when calculating the absolute treatment bene"t expected for a patient, it
may be optimal "rst to perform a meta-analysis of available trial data on the odds ratio scale and
then apply the summary odds ratio to the patient's expected risk [9].

Investigators should assess heterogeneity of trial results before deriving summary estimates of
treatment e!ect [3}5]. Heterogeneity, even for trial odds ratios, is common among collections of
trials that clinical investigators examine. While "xed e!ects odds ratio estimates tend to agree in
magnitude with random e!ects estimates, when heterogeneity is present "xed e!ects standard
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errors often suggest inappropriate precision. Given the low power of the Q-statistic [37], some
investigators believe it is most appropriate to assume that systematic di!erences among trials are
always present, even when the Q-statistic is non-signi"cant, and to use a random e!ects summary
of treatment e!ect [38]. In any event, when trial results are markedly heterogeneous, a clustering
procedure or regression approach will usually be more appropriate than any summary method
that estimates a single &average' e!ect [3, 4, 39].

4.5. Directions for future research

There are several avenues for further research. Some issues, such as the dependence of summary
estimates on weights assigned to individual trials, may best be approached through detailed
simulation studies. One might also assess through simulation the magnitude of bias of "xed and
random e!ects odds ratio estimators. Although we have presented several lines of evidence that
support use of summary odds ratio estimates in meta-analysis , the bias of these estimates may be
substantial when the trials are small, because the estimates are linear combinations of observed
trial odds ratios or their logarithm [12].

It will be important to con"rm our empirical "ndings in other collections of meta-analyses,
such as those in other medical journals or in the Cochrane Library, a collection of meta-analyses
submitted by investigators on a wide range of topics [40]. Additionally, it will be useful to evaluate
other measures of treatment e!ect. An obvious choice is the risk ratio; our preliminary work
suggests that risk ratios, like odds ratios, are usually less heterogeneous than risk di!erences.
Examination of a measure with stabilized variance, the &arcsin'metric [7], may also be informative.
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